CORREÇÃO DO FATOR DE POTÊNCIA

TECNOLOGIA, QUALIDADE E ENERGIA A SERVIÇO DA ECONOMIA.

Engelétrica Indústria, Comércio e Serviços Elétricos Ltda. Rua Xavier da Rocha, 10 - Vila Prudente - São Paulo - CEP: 03139-070 Telefone: (11) 2084-9100 - www.engeletrica.com.br

BANCO DE CAPACITORES PARA A CORREÇÃO DO FATOR DE POTÊNCIA

Banco de Capacitores Automático

Executado em painel autoportante; Seis ou doze estágios; Qualidade e Segurança.

CAPACITORES TRIFÁSICOS WEG - UCWT

A montagem dos bancos de capacitores pode prever a utilização de capacitores trifásicos – UCWT ou módulos capacitivos trifásicos MCWT.

Em ambos os casos a montagem final apresenta um resultado muito seguro.

MCW

Características técnicas

Os capacitores para correção de fator de potência WEG, são desenvolvidos a base de filme de polipropileno metalizado autorregenerativo com dispositivo interruptor de segurança contra sobre pressão interna suas próprias seções.

Normas de referencia: IEC 60831- 1/2

Tolerância de capacitância:

+/-5%

Perda dielétrica: <0,4W/kvar

- Sem partes energizadas expostas;
- Fácil manutenção;
- Acabamento perfeito.

Temperatura ambiente: -25oC a +55oC

Máxima corrente admissível: 1,3

Máxima tensão admissível: 1,1Un (Duração de 8h a cada 24h de operação)

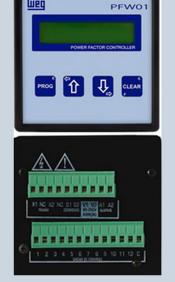
Máximo dV/dt admissível: 30 V/us

Norma Técnica de Referência

NBR IEC 60831- 1/2

"Capacitores autoregenerativos com dispositivos de proteção interna."

Resistores de descarga - 30s, 1/10Un


BANCO PROGRAMÁVEL Eficiência e economia.

- Acionamento manual e automático;
- Programador cíclico e relé de tempo;
- Tampa frontal removivel;
- Fácil instalação;
- Cinza MUNSELL 6,5;

Página 1 www.engeletrica.com.br

Controladores automáticos do Fator de Potência

Correção do Fator de Potência

Descrição

Os controladores automáticos PFW01 são equipamentos microprocessados destinados ao controle do fator de potência de uma instalação elétrica.

Produzidos para medições de corrente e tensão monofásicos e trifásicos e comando de capacitores em 06 e 12 estágios de saída.

Principais características

06 e 12 estágios de saída para controle de bancos de capacitores Medição de tensão monofásica e trifásica

Comutação inteligente dos estágios de saída, aumentando a vida útil dos contatores e capacitores:

Modo manual: Inserção via display frontal do PFW01 dos bancos de capacitores.

Modo automático: Potências iguais dos estágios - PFW01 aciona primeiramente os bancos com o menor número de operações, evitando manobras excessivas em um único estágio e opera de maneira rotativa.

Potências diferentes dos estágios - PFW aciona o banco de acordo com a potência reativa requerida pelo sistema.

Informações

Leituras de:

Tensão, corrente, fator de potência, potência ativa, potência reativa, potência aparente, distorção total de tensão e frequência.

Supervisão e alarme de:

Subtensão e sobretensão

- Corrente mínima e kVAr mínimo correção do fator de potência para transformar a vazio
- Controle para filtro de distorção harmônica ativa estágio 1 e liga filtro externo para distorção harmônica.
- Corrente mínima e máxima
- Fator de potência mínimo e máximo
- Distorção harmônica total de tensão

BANCO AUTOMÁTICO PARA A CORREÇÃO DO FATOR DE POTÊNCIA

Principais características

Baixo custo, alta confiabilidade, dimensões reduzidas, fixação do tipo rápida através de parafusos ou trilhos DIN de 35mm, incorporam resistores de pré-carga, especificação técnica conforme IEC 60947-4 e VDE 0660.

ENGELÉTRICA Montagens customizadas

Durabilidade e Segurança .

Contatores para Manobra de Capacitores

Descrição

Os contatores especiais
WEG CWMC25,CWMC32, CWMC50 e
CWMC65 foram desenvolvidos
especialmente para manobra de
capacitores para correção de fator de
potência (categoria de emprego AC-6b).
Sua utilização possibilita o desempenho
necessário para este tipo de aplicação.

Informações

Durante a manobra dos contatores especiais CWMC25, CWCM32, CWMC50 e CWMC65 os resistores de pré-carga em série com carga reativa permitem a redução dos picos de correntes de "in-rush" que se apresentam neste tipo de operação.

Após a pré-carga, os contatos principais se fecham, permitindo a passagem da corrente nominal Para potências reativas maiores que 15 kVAr (220V) e 25 kVAr (380V/440), recomenda-se subdividir o banco de capacitores em módulos menores e manobrá-los com os contatores CWMC25,CWMC32, CWMC 50 e CWMC65.

Relés Temporizadores

Relés Temporizador RTW

Os Relés temporizadores WEG RTW são dispositivos eletrônicos que permitem, em função de tempos ajustados, comutar um sinal de saída de acordo com a sua função. Muito utilizados em automação de máquinas e processos industriais como partidas de motores, quadros de comando, fornos industriais, injetoras, entre outros...

Possui eletrônica digital que proporciona elevada precisão, repetibilidade e imunidade a ruídos. Projetado de acordo com normas internacionais, o RTW constitui uma solução compacta e segura, em caixas com 22,5mm de largura para montagem em trilho DIN 35mm, nas configurações com 1 ou 2 saídas NANF e alimentado em 110-130V 50/60Hz, 220-240V 50/60Hz ou 24Vcc.

Com 6 faixas de temporização, o RTW pode ser ajustado de 0,3 segundos a 30 minutos com elevada confiabilidade e precisão.

Página 3 www.engeletrica.com.br

Temporização

Programador digital de eventos com relógio em tempo real, o qual permite configurar até quatro eventos para cada dia da semana, através da definição dos horários de início e término de cada um. Possui bateria interna permanente para garantir o sincronismo do relógio, mesmo na falta de energia, por muitos anos.

Controlador digital de temperatura

Utilizado para o acionamento do sistema de exaustão de bancos de capacitores para a correção do fator de potência, de acordo com o seu dimensionamento e características da instalação.

Proteção, Comando e Sinalização.

Principais características

- Alta tecnologia em projeto e fabricação
- Desing moderno e ergonômico
- Contatos e flange com sistema de montagem rápida e fácil
- Bloco de Iluminação com LED integrado de alto brilho
- Projetados de acordo com IEC/EN 60947-5-1

Descrição

Os fusíveis Tipo D e NH classe gL/gG / retardado / 500 Vca Weg, são fabricados com material cerâmico de alta qualidade.

Principais Características

Elevada capacidade de interrupção (tipo D: 50kA, tipo NH: 120kA);

Bases NH 00 encaixe facilitando a montagem de conjuntos;

Especificação técnica conforme normas IEC 269, VDE 0636, NBR 11844 (Fusíveis Tipo D),NBR 11841 (Fusíveis Tipo NH).

Disjuntores curva "C": Minidisjuntores termomagnéticos MDW. Corrente até 63A; Fixação em trilho.

Desde 1985, a Full Gauge Controls desenvolve e produz instrumentos digitais para controle e indicação de temperatura, umidade, tempo, pressão e voltagem. Com clientes localizados nos cinco continentes, consolida-se a cada dia como sinônimo de excelência em tecnologia para sistemas de refrigeração, aquecimento, climatização e aquecimento solar.

SOBRETENSÃO EM CAPACITORES

0%	24h por dia	Contínuo
10%	8h por dia	Incluindo
15%	30 minutos por dia	Livre de harmônicas
20%	5 minutos	200 ocorrências na
30%	1 minuto	vida útil

Página 4 www.engeletrica.com.k

BANCO DE CAPACITORES AUTOMÁTICO PARA A CORREÇÃO DO FATOR DE POTÊNCIA COM REATORES DE DISSINTONIA

Banco automático 660 kVAr / 380V

Banco de capacitores executado em painéis autoportantes.

Equipamento fornecido para atender unidade com sistema redundante. Foram fornecidos 2 x 660 kVAr. Objetivando atender as condições locais de instalação a execução ocorreu através de 6 painéis de 2.000 x 1.200 x 660 mm.

Os painéis foram embalados e transportados separadamente para posterior ligação.

Peso total aproximado: 3.200 kg

DETALHES CONSTRUTIVOS

- Reatores de dissintonia com termostato;
- Manobra e proteção por estágio;
- Barramentos de cobre com tratamento de prata por deposição;
- Proteção contra contatos acidentais;
- Sistema de exaustão e ventilação com controle por temperatura;
- Montagem modular.

BANCO AUTOMÁTICO

Seu acionamento baseia-se na necessidade momentânea de um circuito, seja ele geral ou parcial

MONTAGEM MODULAR

BANCO DE CAPACITORES AUTOMÁTICO PARA A CORREÇÃO DO FATOR DE POTÊNCIA

Por meio de um controlador automático do fator de potência o acionamento de estágios é feito considerando a necessidade de compensação e a potência de cada estágio disponível.

Proteção geral por meio de chave seccionadora tipo NH, bases e fusíveis ou disjuntor caixa moldada. Em casos específicos são utilizados barramentos de cobre eletrolítico grau de pureza 99%, tratados quimicamente - deposição de prata – nos pontos destinados às conexões elétricas.

PAGAMENTO FACILITADO

ANÁLISE DE REDE

Medições com registro gráfico que permite conhecer as grandezas elétricas envolvidas e dimensionar o sistema de forma adequada.

Eventuais partes vivas são devidamente isoladas por meio de anteparos executados em policarbonato.

Cada estágio é protegido individualmente por meio de fusíveis NH ou minidisjuntores contando com sinaleiro que indica a condição ligado e chaves comutadoras de três posições.

AR5

C80

Página 6 www.engeletrica.com.br

BANCO DE CAPACITORES SEMIAUTOMÁTICO (PROGRAMÁVEL) PARA A CORREÇÃO DO FATOR DE POTÊNCIA

Utilizados para a compensação geral, em pequenos consumidores, ou para grupos de máquinas.

Seu acionamento baseia-se no período indutivo e capacitivo. Por meio de um programador cíclico o banco de capacitores é acionado no período indutivo e desligado no período capacitivo de forma a atender as exigências normativas quanto ao fator de potência mínimo.

Além do programador cíclico é instalado um temporizador que evita o acionamento imediato do sistema em caso de desligamento.

Este dispositivo visa preservar o conjunto, uma vez que após o seu desligamento, o capacitor, em decorrência de dispositivo de descarga, deverá ter sua tensão residual reduzida a 10% da tensão nominal após 30s.

Cada módulo capacitivo é composto por proteção, contator e capacitor, sinalizado e manobrado por meio de um conjunto individual de sinaleiro e chave comutadora de três posições.

O acabamento é um dos pontos marcantes da montagem.

MONTAGENS ESPECIAIS

QUALIDADE SUPERIOR

Acionamento no período indutivo e desligamento automático no período capacitivo.

QUALIDADE SUPERIOR

Capacitores trifásicos. Terminais preisolados. Caixa padrão: 500 x 300 250mm Cinza Munsell 6.5

Página 7 www.engeletrica.com.br

Cálculo da Correção do Fator de Potência

FP	Fator de Potência Desejado														
Original	0,85	0,86	0,87	0,88	0,89	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99
0,50	1,112	1,139	1,165	1,192	1,220	1,248	1,276	1,306	1,337	1,369	1,403	1,440	1,481	1,529	1,590
0,52	1,023	1,049	1,076	1,103	1,130	1,158	1,187	1,217	1,247	1,280	1,314	1,351	1,392	1,440	1,500
0,54	0,939	0,965	0,992	1,019	1,046	1,074	1,103	1,133	1,163	1,196	1,230	1,267	1,308	1,356	1,416
0,56	0,860	0,886	0,913	0,940	0,967	0,995	1,024	1,053	1,084	1,116	1,151	1,188	1,229	1,276	1,337
0,58	0,785	0,811	0,838	0,865	0,892	0,920	0,949	0,979	1,009	1,042	1,076	1,113	1,154	1,201	1,262
0,60	0,714	0,740	0,767	0,794	0,821	0,849	0,878	0,907	0,938	0,970	1,005	1,042	1,083	1,130	1,191
0,62	0,646	0,672	0,699	0,726	0,753	0,781	0,810	0,839	0,870	0,903	0,937	0,974	1,015	1,062	1,123
0,64	0,581	0,607	0,634	0,661	0,688	0,716	0,745	0,775	0,805	0,838	0,872	0,909	0,950	0,998	1,058
0,66	0,519	0,545	0,572	0,599	0,626	0,654	0,683	0,712	0,743	0,775	0,810	0,847	0,888	0,935	0,996
0,68	0,459	0,485	0,512	0,539	0,566	0,594	0,623	0,652	0,683	0,715	0,750	0,787	0,828	0,875	0,936
0,70	0,400	0,427	0,453	0,480	0,508	0,536	0,565	0,594	0,625	0,657	0,692	0,729	0,770	0,817	0,878
0,72	0,344	0,370	0,397	0,424	0,452	0,480	0,508	0,538	0,569	0,601	0,635	0,672	0,713	0,761	0,821
0,74	0,289	0,316	0,342	0,369	0,397	0,425	0,453	0,483	0,514	0,546	0,580	0,617	0,658	0,706	0,766
0,76	0,235	0,262	0,288	0,315	0,343	0,371	0,400	0,429	0,460	0,492	0,526	0,563	0,605	0,652	0,713
0,78	0,183	0,209	0,236	0,263	0,290	0,318	0,347	0,376	0,407	0,439	0,474	0,511	0,552	0,599	0,660
0,80	0,130	0,157	0,183	0,210	0,238	0,266	0,294	0,324	0,355	0,387	0,421	0,458	0,499	0,547	0,608
0,82	0,078	0,105	0,131	0,158	0,186	0,214	0,242	0,272	0,303	0,335	0,369	0,406	0,447	0,495	0,556
0,84	0,026	0,053	0,079	0,106	0,134	0,162	0,190	0,220	0,251	0,283	0,317	0,354	0,395	0,443	0,503
0,86			0,027	0,054	0,081	0,109	0,138	0,167	0,198	0,230	0,265	0,302	0,343	0,390	0,451
0,88					0,027	0,055	0,084	0,114	0,145	0,177	0,211	0,248	0,289	0,337	0,397
0,90							0,029	0,058	0,089	0,121	0,156	0,193	0,234	0,281	0,342
0,92									0,031	0,063	0,097	0,134	0,175	0,223	0,284
0,94											0,034	0,071	0,112	0,160	0,220
0,96													0,041	0,089	0,149
0,98															0,061

Exemplo:

Fator de potência atual (FPA)= 0,80; Potência ativa consumida (PA)= 1000kW; Fator de potência desejado (FPD)= 0,92; Fator (vide tabela acima) (F)= 0,324; kvar = PA x F = 1000 x 0,324 = 324 kVAr

Para se calcular o valor da potência reativa necessária para elevar o fator de potência ao valor desejado através de contas de energia elétrica (recomenda-se realizar a média dos últimos doze meses, no mínimo (1)), utiliza-se os valores de fator de potência atual e potência ativa consumida das contas e o fator encontrado na tabela acima.

Obs.: Se mais de 20% das cargas a serem corrigidas forem não lineares (inversores de freqüência, soft-starter, retificadores, reatores eletrônicos, etc.) deve-se instalar em série com os capacitores

INDUTORES ANTI-HARMÔNICAS.

Limites de distorções harmônicas: DHT tensão < 5% Vrms e DHT corrente < 15%.

O uso de capacitores em sistema elétricos com elevados níveis de distorções harmônicas podem danificar as células capacitivas internamente.

Para maiores informações técnicas, consultar o Manual para Correção do Fator de Potência WEG, modelo 958.

NOTAS:

- (1) Em casos de sazonalidade, deve-se fazer a análise dos períodos em separado, levandose em consideração o pior caso.
- (2) Este exemplo é orientativo. Sempre que possível, deve-se conhecer os tipos de cargas presentes e a curva de carga da instalação.

Página 8 www.engeletrica.com.br

- ✓ Laudos (Instalações elétricas , ICMS e SPDA)
- ✓ Medições
- ✓ Analise de Rede
- ✓ Termografia
- ✓ Manutenções preventivas e corretivas de Cabines primárias (Avulsa ou contrato mensal)
- ✓ Montagens de instalações de Média e Baixa Tensão
- ✓ Projetos elétricos e SPDA
- ✓ Diagramas Unifilares
- ✓ NR-10
- ✓ Gerenciamento de Energia:
 - ACL Ambiente de Contratação Livre (MERCADO LIVRE)
 - ACR Ambiente de Contratação Regulada (MERCADO CATIVO)

Engelétrica Indústria, Comércio e Serviços Elétricos Ltda. Rua Xavier da Rocha, 10 - Vila Prudente - São Paulo - CEP: 03139-070 Telefone: (11) 2084-9100 - www.engeletrica.com.br

